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Hepatic IRF3 fuels dysglycemia in obesity through 
direct regulation of Ppp2r1b
Suraj J. Patel1,2,3,4,5*, Nan Liu4,6,7,8, Sam Piaker2,3, Anton Gulko2, Maynara L. Andrade2, 
Frankie D. Heyward2,4,9, Tyler Sermersheim2, Nufar Edinger2,4, Harini Srinivasan2,4, 
Margo P. Emont2,4, Gregory P. Westcott2,4, Jay Luther3, Raymond T. Chung3, Shuai Yan2,4, 
Manju Kumari10, Reeby Thomas11, Yann Deleye12, André Tchernof13, Phillip J. White12,14, 
Guido A. Baselli15,16, Marica Meroni17, Dario F. De Jesus4,18, Rasheed Ahmad11, 
Rohit N. Kulkarni4,9,18, Luca Valenti15,16, Linus Tsai2,4,9, Evan D. Rosen2,4,9*

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and 
nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a 
direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/
threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on 
a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects 
only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies 
Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-
mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPK and 
AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-
induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed 
enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated 
with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic 
IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an ap-
proach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.

INTRODUCTION
The liver plays a critical role in metabolism, maintaining glucose 
homeostasis by balancing the storage and release of glucose via gly-
cogenolysis and gluconeogenesis (1, 2). This delicate balance becomes 
dysregulated during overnutrition, as the liver produces glucose in 
excess of the body’s needs and begins to accumulate lipids, a condi-
tion known as nonalcoholic fatty liver disease (NAFLD). Over time, 

this can progress from simple steatosis to steatohepatitis and even-
tually, in some cases, cirrhosis and hepatocellular carcinoma. Although 
it remains unclear what pathways trigger the initial dysregulation in 
glucose homeostasis, numerous studies suggest that hepatic inflam-
mation is involved (3–6).

It has been appreciated for decades that obesity triggers a state of 
chronic inflammation in the liver that is associated with metabolic 
dysfunction (7–10). The connection between inflammation and 
metabolism has been suggested to involve the actions of proinflammatory 
cytokines secreted by infiltrating immune cells (11–13). However, 
anti-inflammatory strategies targeting cytokines have consistently 
proven to be ineffective at improving insulin action and metabolic 
function (14,  15). For example, neutralization of tumor necrosis 
factor– (TNF) had no effect on insulin sensitivity or steatosis in 
obese diabetic patients (16, 17). Mice lacking either TNF or TNF 
receptor 1 demonstrated equivalent steatohepatitis as compared to 
control animals on high-fat diet (HFD) (18, 19). Furthermore, mice 
deficient in interleukin-6 (IL-6) display increased obesity, steato-
hepatitis, and insulin resistance (20). Proinflammatory cytokines 
generated in obesity are believed to function by activating the tran-
scription factor nuclear factor B (NF-B) (21, 22). Many studies 
have implicated hepatic NF-B in obesity and fatty liver disease by 
showing the importance of the upstream kinase inhibitor of NF-B 
kinase  (IKK) (4), but the interpretation of these studies is com-
plicated by the fact that IKK can cause metabolic dysfunction via 
NF-B–independent pathways (23). Furthermore, despite display-
ing a systemic proinflammatory expression pattern, the effect of p65 
(the active subunit of NF-B) overexpression on insulin sensitivity 
and steatosis varies greatly depending on the target tissue (24–26). 
Together, these studies suggest that inflammatory transcription factors 
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other than NF-B must be relevant in the hepatic metabolic dys-
function of obesity.

The interferon (IFN) regulatory factors (IRFs) represent another 
class of transcription factors with major functions in innate and 
adaptive immunity. Several of the IRFs have also been linked to me-
tabolism, making them prime candidates to be mediators of immuno
metabolic changes that occur during obesity (27, 28). IRF3  in 
particular has been implicated in metabolic processes, including 
adipogenesis and thermogenesis (28). In the context of cholesterol 
metabolism, IRF3 was demonstrated to inhibit ABCA1 and other 
liver X receptor–regulated genes (29, 30).

IRF3 resides in the cytosol until it is activated by pattern recog-
nition receptors (PRRs), such as Cyclic GMP-AMP Synthase (cGAS) 
and Toll-like receptors (TLRs), which activate the kinases TBK1 
(TANK-binding kinase 1), IKK, and apoptosis signal–regulating 
kinase 1, triggering IRF3 phosphorylation, dimerization, nuclear 
translocation, and chromatin binding (31, 32). The best character-
ized targets of IRF3 in immune cells are a suite of genes collectively 
called IFN-stimulated genes (ISGs), including Ifn, Ifit1, Isg15, and 
Rsad2 (33). Several studies have shown that activation of the stimulator 
of interferon genes (STING)/TBK1-IKK/IRF3 axis is associated 
with worsening metabolic dysfunction in obesity, though some 
have implicated the opposite (5, 28, 34–38). Nevertheless, none have 
identified which downstream targets of IRF3 mediate its metabolic ac-
tions. Thus, despite the importance of inflammation in obesity, the 
mechanism by which inflammatory factors such as IRF3 directly trigger 
metabolic dysfunction remains an unanswered fundamental biological 
question. Here, we investigate the effect of hepatic IRF3 activation on 
metabolism and glucose homeostasis in obesity.

RESULTS
IRF3 is activated in liver tissue and promotes steatohepatitis 
and insulin resistance
To determine whether hepatic IRF3 plays a role in obesity-induced 
metabolic dysfunction, we began by assessing hepatic expression of 
Irf3 and classic IRF3 target genes (ISGs) in HFD-fed mice. Despite 
the absence of infection in this setting, we detected robust expres-
sion of ISG mRNAs (Fig. 1A). In contrast, IRF3-deficient (IRF3KO) 
mice showed a near complete abrogation of HFD-induced hepatic 
ISG mRNA expression (fig. S1A). Although IRF3 mRNA and pro-
tein expression was similar in HFD-fed and standard chow diet 
(SCD)–fed mice, we found increased amounts of the IRF3 upstream 
kinase, TBK1, as well as elevated phosphorylated IRF3 (pIRF3; 
Ser396) as early as 3 weeks into HFD feeding and persisting until at 
least 16 weeks (Fig. 1B). Given the cellular heterogeneity of liver, we 
used the NuTRAP (nuclear tagging and translating ribosome affin-
ity purification) transgenic mouse line to study changes specifically 
in hepatocytes (39). NuTRAP mice allow isolation of ribosome-
bound mRNA and nuclei from specific cell types with Cre-dependent 
expression of green fluorescent protein (GFP)–tagged 60S ribosomal 
subunit L10a and mCherry-labeled nuclei, respectively. We crossed 
NuTRAP mice with hepatocyte-specific albumin-Cre recombinase 
(Alb-Cre) mice (hereafter called NuTRAPalb) and then isolated he-
patocyte mRNA and nuclei from whole liver tissue (fig. S1, B and C). ISG 
mRNA amounts were elevated in hepatocytes from obese HFD-fed mice 
compared to SCD-fed (Fig. 1C). Consistent with these findings, nuclear 
IRF3 protein amounts were also increased in hepatocytes from HFD-fed 
mice, indicating enhanced IRF3 activation (Fig. 1D).

We next asked whether IRF3 activity is elevated in the livers of 
obese patients with NAFLD (fig. S1, D and E) (40, 41). The correla-
tion between hepatic IRF3 expression and body mass index (BMI) 
was not statistically significant (r value of 0.262, P = 0.059) (Fig. 1E). 
However, there was a statistically significant correlation (r value of 
0.321, P = 0.018) between BMI and expression of RSAD2, a classic 
IRF3 target gene (Fig. 1F), suggesting increasing hepatic IRF3 acti-
vation with obesity. Examining a different cohort of obese patients 
with NAFLD, we again found no association between hepatic IRF3 
expression and NAFLD, but a substantial association existed be-
tween hepatic IRF3 transcriptional activity and NAFLD histological 
severity (Fig. 1, G and H, and fig. S1E) (41). IRF3 transcriptional 
activity was assessed by analyzing the expression data of an IRF3 
target gene set using virtual inference of protein activity by en-
riched regulon analysis (VIPER) (42, 43), where severe NAFLD was 
defined as the presence of nonalcoholic steatohepatitis or advanced 
fibrosis (≥F2). We then evaluated liver samples from this cohort by 
immunohistochemistry and found progressively increasing hepato-
cyte nuclear pIRF3 staining with NAFLD severity (Fig. 1, I and J). 
Together, these data show that hepatic IRF3 phosphorylation and 
activation of the IRF3 transcriptional program are associated with 
obesity and NAFLD progression in humans.

To determine the functional significance of obesity-induced 
IRF3 activation on liver disease and metabolism, we compared indi-
cators of steatohepatitis and insulin sensitivity between wild-type 
(WT) and IRF3KO mice on HFD (60% fat). On this diet, IRF3KO 
mice showed no difference in total body weight or food intake 
(Fig. 1K and fig. S1F). However, prolonged HFD resulted in sub-
stantially less histological evidence of hepatic steatosis and inflam-
mation in IRF3KO mice (Fig. 1, L and M, and fig. S1G). Consistent 
with this, hepatic triglyceride (TAG) accumulation was markedly 
reduced in IRF3KO mice (Fig. 1N and fig. S1G). Given the known 
association between steatosis and insulin resistance, we evaluated 
the effects of IRF3 on glucose homeostasis and insulin action. 
IRF3KO mice showed reduced fasting insulin after high-fat feeding, 
with no change in fasting glucose (fig. S1, H and I). Furthermore, 
IRF3KO mice demonstrated substantially improved glucose and in-
sulin tolerance after 13 and 14 weeks of HFD, as well as enhanced 
pyruvate tolerance, suggesting decreased hepatic gluconeogenesis 
(Fig. 1, O to Q, and fig. S1, J to L). Together, these data indicate that 
global IRF3 deficiency protects against obesity-induced hepatic 
steatosis and insulin resistance.

Hepatocyte IRF3 deficiency improves obesity-induced 
insulin resistance and glucose homeostasis
Given the cellular heterogeneity of liver, we sought to determine 
which hepatic cell type is responsible for the metabolic actions of 
IRF3. We therefore created an allele in which Irf3 exons three to six 
were flanked by loxP sites (Fig. 2A), allowing for Cre recombinase–
dependent ablation of Irf3. IRF3 floxed mice (Irf3flox) were crossed 
with Alb-Cre mice, generating hepatocyte-deficient IRF3 (LI3KO) 
mice. LI3KO mice showed no IRF3 protein or ISG mRNA expres-
sion in hepatocytes, but expression in liver nonparenchymal cells 
(NPCs) was unperturbed (Fig. 2B and fig. S2A). LI3KO mice showed 
no difference in total body weight or food intake while on HFD 
(Fig. 2C and fig. S2B). Unexpectedly, LI3KO mice were not protected 
from HFD-induced steatosis or triglyceride accumulation but did 
display decreased macrophage infiltration (Fig. 2, D to G). Despite 
a comparable degree of steatosis as HFD-fed Irf3flox mice, LI3KO 
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Fig. 1. IRF3 is activated in liver tissue of obese mice and humans, promoting steatohepatitis and insulin resistance. (A) Expression of IFN-stimulated genes (ISGs) in 
liver tissue from male mice fed SCD or HFD for 6 weeks (n = 4). (B) Immunoblot showing TANK-binding kinase 1 (TBK1), phosphorylated IRF3 (pIRF3; Ser396), and total IRF3 in 
liver tissue from male mice fed SCD or HFD for 3, 6, 9, and 16 weeks. (C) Expression of hepatocyte ISGs in TRAP liver tissue from male NuTRAPalb mice fed SCD or HFD for 6 weeks 
(n = 4). (D) Immunoblot showing IRF3 and GFP in hepatocyte nuclei from male NuTRAPalb mice fed SCD or HFD for 6 weeks, as well as total liver cell nuclei from male IRF3KO 
mice on SCD (last lane). Nuclei from NuTRAPalb mice were sorted by flow cytometry on the basis of hepatocyte-specific nuclear GFP expression. (E) Expression of IRF3 and 
(F) RSAD2 in liver tissue from healthy lean and obese patients correlated with BMI (n = 54). (G) Expression of IRF3 and (H) transcriptional activity of IRF3 in liver tissue from 
obese patients without NAFLD (normal), with simple steatosis, or with severe NAFLD (NAFLD activity score > 5; n = 77). (I) Liver tissue from obese patients without NAFLD 
(normal), with simple steatosis, or with severe NAFLD, stained for pIRF3 (Ser396) or total IRF3 (representative images from n = 14 patients). Ab, antibody. Scale bars, 100 m. 
(J) Quantification of hepatocyte nuclei that stained positive for pIRF3 or total IRF3. (K to Q) Male WT and IRF3KO littermate mice were fed HFD for 3 to 16 weeks. (K) Total body 
weight of WT and IRF3KO mice during HFD feeding (n = 8 to 15). (L) Hematoxylin and eosin (H&E) staining of liver tissue and (M) modified NAFLD activity score of liver histology 
from WT and IRF3KO mice fed SCD or HFD for 6 or 16 weeks (n = 6–9). Scale bars, 100 m. (N) Liver triglyceride (TAG) content in WT and IRF3KO mice fed SCD or HFD for 6 or 
16 weeks (n = 4 to 9). (O) Glucose (1 g/kg), (P) insulin (1.75 U/kg), and (Q) pyruvate (1.25 g/kg) tolerance tests performed on WT and IRF3KO mice after 13, 14, and 15 weeks on 
HFD, respectively (n = 8 to 11). Data are presented as means ± SD; *P < 0.05, **P < 0.01, and ***P < 0.001.
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mice were more insulin sensitive, with improved glucose and insu-
lin tolerance (Fig. 2, H and I, and fig. S2, C and D). Similarly, fasting 
insulin and pancreatic  cell mass were reduced in LI3KO mice on 
HFD (fig. S2, E to H). Furthermore, whole liver lysates from HFD-fed 

LI3KO mice showed increased insulin-stimulated AKT phosphoryl
ation (pAKT; Ser473), suggesting improved insulin signaling (Fig. 2J). 
Although the association between steatosis and insulin resistance in 
obesity is complex, diacylglycerols (DAGs) and ceramides have 
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Fig. 2. Hepatocyte deficiency in IRF3 improves obesity-induced insulin sensitivity and glucose homeostasis. (A) Schematic of floxed Irf3 allele. (B) Immunoblot 
showing IRF3 in the spleen, liver nonparenchymal cells (NPCs), and hepatocytes from 6-week-old male Irf3flox and LI3KO mice. (C) Total body weight of male Irf3flox and 
LI3KO littermate mice during HFD feeding (n = 12 to 14). (D) H&E staining of liver tissue from male Irf3flox and LI3KO mice fed SCD or HFD for 20 weeks. Scale bars, 100 m. 
(E) Liver triglyceride (TAG) content in male Irf3flox and LI3KO mice fed SCD or HFD for 20 weeks (n = 10 to 12). (F) F4/80 immunostaining of liver tissue from male Irf3flox and 
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on male Irf3flox and LI3KO mice fed HFD for 18 or 19 weeks, respectively (n = 10 to 12). (J) Immunoblot showing insulin-stimulated phosphorylated AKT (pAKT; Ser473) and 
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thanized 5 min later. Liver tissue was harvested within 90 s. (K) Immunoblot showing phosphorylated AMPK (pAMPK; Thr172) and total AMPK, phosphorylated ACC 
(pACC; S79) and total ACC, and phosphorylated ULK1 (pULK1; S555) and total ULK1 in liver tissue from male Irf3flox and LI3KO mice fed HFD for 20 weeks. Mice were fasted 
for 5 hours before euthanasia. (L) Immunoblot showing pAKT, AKT, pAMPK, and AMPK in palmitic acid (PA; 500 M)–treated primary hepatocytes isolated from 6-week-
old male Irf3flox and LI3KO mice. Data are presented as means ± SD; *P < 0.05.
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emerged as the two most-studied mediators of lipid-induced hepatic 
insulin resistance (44). We saw no statistically significant differences 
in liver DAG and ceramide amounts between HFD-fed LI3KO and 
Irf3flox mice (fig. S2, I to L).

In addition to the insulin-AKT pathway, another major regula-
tor of hepatic glucose production is adenosine 5′-monophosphate 
(AMP)–activated protein kinase (AMPK) (45–47). AMPK is com-
posed of three subunits, one of which (AMPK) is activated by 
phosphorylation at Thr172, triggering inhibition of hepatic glucone-
ogenesis (47–49). We found increased hepatic AMPK phosphoryl
ation (pAMPK; Thr172), as well as acetyl–coenzyme A (CoA) 
carboxylase (ACC) (pACC; Ser79) and Unc-51 Like Autophagy Ac-
tivating Kinase 1 (ULK1) (pULK1; Ser555) phosphorylation, two tar-
gets of AMPK, in HFD-fed LI3KO mice, suggesting another reason 
for their improved glucose homeostasis (Fig.  2K). To determine 
whether the improved insulin signaling and glucose homeostasis in 
the livers of LI3KO mice were cell-autonomous features, we isolated 
primary hepatocytes from Irf3flox and LI3KO mice and stimulated 
them with palmitic acid (PA) to render them insulin resistant (50). 
Although both pAKT and pAMPK were reduced in PA-treated 
Irf3flox hepatocytes, they were increased in LI3KO hepatocytes (Fig. 2L). 
Collectively, these data suggest that, within hepatocytes, IRF3 mediates 
HFD-induced insulin resistance and dysregulation of glucose ho-
meostasis, but not steatosis.

Hepatocyte IRF3 drives insulin resistance and glucose 
production and inhibits AMPK phosphorylation
We next asked whether activated IRF3 in hepatocytes is sufficient to 
reduce insulin sensitivity and promote dysglycemia. For these gain-
of-function studies, we took advantage of a phosphomimetic con-
struct that we previously created in which Ser388 and Ser390 of 
murine IRF3 are mutated to aspartic acid, resulting in a constitu-
tively active allele called IRF3-2D (28). Once expressed, IRF3-2D 
does not require an external stimulus for activation. This allele was 
FLAG-tagged and placed within the Rosa26 locus downstream of a 
loxP-stop-loxP cassette, allowing Cre-dependent expression of IRF3-2D 
(IRF3LSL-2D; Fig.  3A). IRF3LSL-2D mice were injected with adeno-
associated virus 8 (AAV8) expressing Cre recombinase under the 
control of the hepatocyte-specific thyroxine-binding globulin pro-
moter (AAV8-TBG-Cre), enabling selective expression of IRF3-2D 
in hepatocytes with temporal control (51). Hepatocytes from mice 
injected with AAV8-TBG-Cre expressed the IRF3-2D allele and 
displayed elevated ISG mRNAs when compared to liver NPCs 
(Fig. 3B and fig. S3A). IRF3LSL-2D mice placed on HFD and then 
injected with AAV8-TBG-Cre showed worsened glucose tolerance 
(Fig. 3C and fig. S3B) and impaired hepatic insulin signaling with 
decreased AKT phosphorylation in the liver (Fig. 3D), despite no 
change in body weight compared to AAV8-TBG-GFP–injected mice 
(fig. S3C). Furthermore, hepatocytes isolated from IRF3LSL-2D mice 
transduced ex vivo with a Cre recombinase–expressing adenovirus 
(Ad-Cre) demonstrated decreased insulin signaling, as measured 
by insulin-stimulated AKT phosphorylation (Fig.  3E). Although 
AKT phosphorylation can be used as a proxy for insulin signaling, 
the true functional measure for insulin sensitivity in hepatocytes 
is suppression of glucose production. IRF3LSL-2D hepatocytes were 
transduced ex vivo with Ad-Cre and stimulated with cyclic AMP to 
drive gluconeogenesis in the presence or absence of insulin. Expres-
sion of IRF3-2D blunted the ability of insulin to inhibit glucose pro-
duction (Fig. 3F). IRF3-2D also increased glucose production in 

the absence of insulin, suggesting that the effect of IRF3 on hepat-
ic glucose production was not exclusively dependent on its ability 
to impair insulin signaling through AKT.

We next asked whether IRF3 activation promotes AMPK 
phosphorylation independent of insulin signaling. For these stud-
ies, we first utilized 5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR), a known activator of AMPK and suppressor of gluconeo-
genesis in hepatocytes, albeit independently of AMPK (52). AICAR 
stimulation of hepatocytes induced AMPK phosphorylation in a 
dose-dependent fashion (fig. S3D). However, when IRF3LSL-2D he-
patocytes were transduced ex vivo with Ad-Cre, the resulting IRF3-2D 
expression decreased AMPK phosphorylation, even in the presence 
of AICAR (Fig. 3G). Concomitantly, IRF3-2D increased basal glucose 
production and further inhibited the ability of AICAR to suppress 
glucose production (Fig. 3H).

There are, however, critical limitations in using AICAR as an 
AMPK activator for suppressing hepatic glucose production. Namely, 
AICAR has been shown to decrease glucose production inde-
pendently of AMPK (53, 54). Thus, we used mutant AMPK alleles 
to directly modulate AMPK activity, in the setting of IRF3 activa-
tion, and study its effects on glucose production. Primary hepato-
cytes were isolated from IRF3LSL-2D mice, transfected with either 
a control plasmid expressing GFP (pGFP) or a plasmid expressing 
constitutively active AMPK (pAMPK-312X; fig. S3E) (55). 
Hepatocytes were then transduced with Ad-Cre to activate IRF3-2D.  
We found that expressing constitutively active AMPK prevented 
the ability of IRF3 to increase glucose production (fig. S3F). We also 
isolated primary hepatocytes from Irf3flox and LI3KO mice, trans-
fected them with either pGFP or a plasmid expressing a dominant 
negative allele of AMPK (pAMPK-K45R) (55). Hepatocytes were 
then treated with PA to stimulate HFD conditions in  vitro. Al-
though IRF3 deficiency decreased glucose production, when the 
dominant negative AMPK mutant was expressed, no glucose sup-
pression was observed (fig. S3G). These results support the notion 
that AMPK plays a role in mediating the effects of IRF3 on glucose 
production in a cell-autonomous manner.

Transcriptionally active IRF3 is necessary for its effects 
on insulin and AMPK signaling
Although IRF3 is best known as a transcription factor, it has also 
been shown to have nontranscriptional activity, such as triggering 
apoptosis by translocating to the mitochondria and activating the 
proapoptotic factor Bcl-2-associated X (BAX) (56, 57). Thus, we as-
certained whether the metabolic actions of IRF3 in hepatocytes re-
quire its transcriptional function. The nuclear localization signal for 
IRF3 contains two clusters of basic amino acids that lie within the 
N-terminal DNA binding domain. Replacing two of these basic 
amino acids with neutral amino acids renders IRF3 incapable of nu-
clear translocation (58). We therefore created an alternative IRF3-2D 
allele in which Arg86 and Lys87 were mutated to Leu and Gln, respec-
tively (IRF3-2D-NLS; fig. S4A). Hepatocytes transduced with 
IRF3-2D–expressing adenovirus (Ad-IRF3-2D) showed substantial 
nuclear localization of IRF3 and increased mRNA expression of 
ISGs (Fig.  4,  A  and  B, and fig. S4B). In comparison, hepatocytes 
transduced with IRF3-2D-NLS–expressing adenovirus (Ad-IRF3-
2D-NLS) showed substantially less nuclear localization of IRF3 and 
mRNA expression of ISGs (Fig. 4, A and B, and fig. S4B). As before, 
expression of IRF3-2D inhibited AKT and AMPK phosphoryla-
tion, but IRF3-2D-NLS had no such effect (Fig. 4C). Furthermore, 
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whereas expression of IRF3-2D increased basal glucose produc-
tion, expression of IRF3-2D-NLS failed to do so. IRF3-2D-NLS 
also failed to inhibit AICAR-mediated suppression of glucose pro-
duction (Fig. 4D). Together, these results demonstrate that the met-
abolic actions of IRF3 on insulin signaling and glucose production 
are likely to be mediated by its transcriptional activity.

To determine which downstream targets of IRF3 mediate its 
metabolic actions, we sought to define the complete IRF3-dependent 
transcriptome and cistrome in hepatocytes. Hepatocytes were iso-
lated from IRF3LSL-2D mice and transduced ex vivo with Ad-Cre to 
activate expression of IRF3-2D (versus Ad-mCherry–transduced 
cells as a control; Fig. 4E). We conducted genome-wide expression 
profiling of Ad-Cre– and Ad-mCherry–transduced hepatocytes by 
RNA sequencing (RNA-seq) and identified 1301 differentially ex-
pressed genes (Fig. 4F and fig. S4, C and D). Of these, 583 were 
up-regulated and 718 were down-regulated. As expected, canonical 
ISGs such as Isg15, Rsad2, and Ifit3 were among the most highly in-
duced genes (Fig. 4F). Gene set enrichment analysis of up-regulated 
genes revealed that pathways involved in the antiviral and innate 
immune response were the most enriched, again consistent with the 
known function of IRF3 (Fig. 4G). Of particular interest, however, 
multiple metabolic pathways were also up-regulated, including the 

PI3K (phosphatidylinositol 3-kinase)–AKT and insulin signaling 
pathways (Fig. 4G).

IRF3-dependent gene expression changes can be direct (due to 
binding and transactivation of IRF3 at the locus in question) or 
indirect (due to a secondary effect of IRF3, such as induced by 
cytokines that are themselves direct targets of IRF3). To determine 
which of the observed gene expression changes were due to the direct 
transcriptional actions of IRF3, we characterized the IRF3 cistrome 
in hepatocytes using an epigenomic technique called Cleavage Under 
Targets and Release Using Nuclease (CUT&RUN), which, similar to 
ChIP-seq, enables mapping of transcription factor–chromatin inter-
actions (59, 60). IRF3 CUT&RUN was performed on IRF3LSL-2D he-
patocytes transduced with Ad-Cre to activate IRF3-2D; IRF3LSL-2D 
hepatocytes transduced with Ad-mCherry were again used as nega-
tive controls. A total of 6715 differential peaks were called, of 
which 83% were up-regulated in Ad-Cre–transduced hepatocytes 
(Fig. 4H and fig. S4E). Strong IRF3 peaks were observed in the pro-
moter regions of numerous ISGs, including Isg15, Ifit3, and Oasl1 
(Fig. 4I). Analysis of genomic peak distribution showed that peaks 
with an IRF3 motif were most abundant within promoters (25%), 
introns (35%), and distal intergenic regions (34%; fig. S4F). Unbi-
ased de novo motif discovery of IRF3 CUT&RUN peaks yielded the 
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Fig. 3. Activation of hepatocyte IRF3 drives insulin resistance and glucose production, and inhibits AMPK phos-
phorylation. (A) Schematic of IRF3-2D allele and AAV8-TBG-Cre infection strategy. (B) Immunoblot showing IRF3 in liver 
NPCs and hepatocytes isolated from 6-week-old male IRF3LSL-2D mice tail vein–injected with AAV8-TBG-GFP or AAV8-
TBG-Cre. (C) Glucose tolerance test (1 g/kg) in male IRF3LSL-2D mice fed HFD for 10 weeks with tail vein injection of AAV8-
TBG-GFP or AAV8-TBG-Cre on week 8 of HFD (n = 6 to 7). (D) Immunoblot showing insulin-stimulated pAKT (Ser473), total 
AKT, and IRF3 in liver tissue from 10-week-old male IRF3LSL-2D mice on SCD, tail vein–injected with AAV8-TBG-GFP or 
AAV8-TBG-Cre 2 weeks prior. Mice were fasted for 5 hours, injected intraperitoneally with insulin (5 U/kg), and euthanized 5 min later. Liver tissue was harvested within 
90 s. (E) Immunoblot showing insulin-stimulated pAKT (Ser473), total AKT, and IRF3 in hepatocytes isolated from 6-week-old male IRF3LSL-2D mice and transduced ex vivo 
with adenovirus expressing Cre recombinase (Ad-Cre) or mCherry (Ad-mCherry). Hepatocytes were stimulated with 5 nM insulin in serum-free William’s E medium for 
5 min. (F) Glucose production in hepatocytes isolated from 6-week-old male IRF3LSL-2D mice, transduced ex vivo with Ad-Cre or Ad-mCherry, and treated with 8-CPT–cyclic 
AMP in the presence or absence of insulin (5 nM; n = 4). (G) Immunoblot showing AICAR-stimulated pAMPK (Thr172) and total AMPK in hepatocytes isolated from 
6-week-old male IRF3LSL-2D mice and transduced ex vivo with Ad-Cre or Ad-mCherry. Hepatocytes were stimulated with 100 M AICAR in glucose production media for 
6 hours. (H) Glucose production in hepatocytes isolated from 6-week-old male IRF3LSL-2D mice, transduced ex vivo with Ad-Cre or Ad-mCherry, and treated with various 
dosing of AICAR for 6 hours in glucose production media (n = 4). Data are presented as means ± SD; *P < 0.05, **P < 0.01.
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duced ex vivo with adenovirus 
expressing IRF3-2D (Ad-IRF3-2D) 
or IRF3-2D-NLS (Ad-IRF3-2D-
NLS). Scale bars, 15 m. Cells 
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body (red) and Hoechst nuclear 
stain (blue), and images were 
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tion of anti-IRF3 antibody and 
Hoechst stain [inset in (A)] along 
the line scan (dashed line) at the 
level of each binucleated hepato-
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distance along the line scan, and 
the y axis shows arbitrary fluores-
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the line scan is labeled on the x 
axis. (C) Immunoblot showing 
pAKT (Ser473), total AKT, pAMPK 
(Thr172), total AMPK, and ISG15 in 
WT primary hepatocytes trans-
duced ex vivo with Ad-GFP, Ad-
IRF3-2D, or Ad-IRF3-2D-NLS. 
(D) Glucose production in Ad-
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glucose production media (n = 4). 
(E) Experimental strategy to iden-
tify to complete IRF3 transcrip-
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Hepatocytes from 6-week-old male 
IRF3LSL-2D mice were isolated and 
transduced ex vivo with Ad-Cre 
to activate the IRF3-2D allele or 
Ad-mCherry as a control. (F) Vol-
cano plot of RNA-seq expression 
data from Ad-Cre– and Ad-
mCherry–transduced hepatocytes. 
Statistically significant [false dis-
covery rate (FDR) < 0.05] differ-
entially expressed genes are 
shown in red. Several highly dif-
ferentially expressed ISGs and 
Irf3 are shown in blue. (G) Kyoto Encyclopedia of Genes and Genomes pathway analysis of RNA-seq data from Ad-Cre– and Ad-mCherry–transduced hepatocytes. Percentage 
represents percent of affected genes within that pathway. (H) Volcano plot of IRF3 CUT&RUN peaks from Ad-Cre– and Ad-mCherry–transduced hepatocytes. Statis-
tically significant (FDR < 0.05) differentially expressed genes are shown in red. Fold change is represented as Ad-Cre/Ad-mCherry. (I) IRF3 CUT&RUN profiles near the 
transcription start sites (pink) of several ISGs. Each track displays a different sample (n = 2 for Ad-Cre and n = 2 for Ad-mCherry). The x axis represents the genomic distance, 
and the y axis represents the relative alignment units. (J) The top motif found by de novo motif discovery analysis of IRF3 CUT&RUN up-regulated peaks (bottom) and the 
known IRF3 binding sequence (top). Motifs are shown as position weight matrices. E value is shown as reported by MEME. (K) Scatterplot of all transcription factor–
matched motifs within the IRF3 CUT&RUN up-regulated peaks. The x axis indicates motif enrichment, and the y axis indicates motif abundance. Top 10 transcription 
factor–matched motifs within the IRF3 CUT&RUN up-regulated peaks are annotated. (L) Scatterplot of peak-gene associations between IRF3 motif–containing up-regulated 
CUT&RUN peaks and potentially nearby regulated genes. The x axis indicates fold change in IRF3 CUT&RUN peak expression, and the y axis indicates the FDR of RNA-seq 
differential gene expression analysis (Ad-Cre/Ad-mCherry). Peak-gene associations with the highest fold change in peak expression (log2FC > 5) and most significant 
change in gene expression (−log10FDR > 200) are in the green region. Ppp2r1b is annotated in red. Data are presented as means ± SD; **P < 0.01.
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known IRF3 recognition sequence as the best match with an E value 
of 5.75 × 10−10 (Fig. 4J). Closely related motifs for STAT1 (signal 
transducers and activators of transcription 1) and other IRF family 
members were also identified but were much less enriched and less 
abundant than the IRF3 motif itself (Fig. 4K).

We next used genomic distance to transcription start sites to 
form unique peak-gene associations between IRF3 motif-containing 
peaks and potentially regulated genes. Assuming that functionally 
important peak-gene associations must trigger increases in gene 
expression, we integrated these data with our RNA-seq dataset and 
compiled a list of direct transcriptional targets of IRF3 in hepato-
cytes (data file S1). Peak-gene associations with the highest fold 
change in peak expression (log2FC  >  5) and most significant 
change in gene expression (−log10FDR  >  200) were prioritized 
(Fig. 4L).

PPP2R1B is a transcriptional target of IRF3 and associates 
with dysglycemia
Integration of the IRF3 transcriptome and cistrome datasets re-
vealed multiple potential mediators of IRF3’s metabolic action in 
hepatocytes. Among the top hits, we were immediately drawn to the 
Protein Phosphatase 2 Scaffold Subunit A beta (Ppp2r1b) gene, which 
encodes a subunit of the heterotrimeric serine/threonine protein 
phosphatase 2 (PP2A). PP2A is a negative regulator of both the 
AKT and AMPK signaling pathways (61, 62), which we showed are 
markedly affected by IRF3 activation. PP2A consists of a dimeric 
core enzyme composed of the structural A and catalytic C subunits, 
along with a regulatory B subunit (63). The evolutionarily conserved 
A subunit is the scaffold required for formation of the active com-
plex. In humans and mice, structural subunit A is encoded by two 
different genes, Ppp2r1a and Ppp2r1b (64). Whereas PPP2R1A is ex
pressed throughout the human body, PPP2R1B expression is largely 
restricted to the liver (fig. S5A). We found strong intronic IRF3 
CUT&RUN peaks within the Ppp2r1b gene in Ad-Cre–transduced 
IRF3LSL-2D hepatocytes, showing that, when IRF3 is activated, it binds 
to chromatin within the Ppp2r1b gene (Fig. 5A). Concordant with 
the binding data, Ppp2r1b expression was substantially up-regulated 
in Ad-Cre–transduced hepatocytes, both at the transcript and pro-
tein levels (Fig. 5, B and C). This up-regulation was not seen when 
the transcriptionally silent IRF3-2D-NLS allele was overexpressed 
(Fig. 5D). Furthermore, Ad-Cre–transduced IRF3LSL-2D hepato-
cytes demonstrated substantially increased PP2A phosphatase ac-
tivity toward an independent substrate (Fig. 5E). Conversely, 
hepatocytes isolated from LI3KO mice showed decreased PP2A 
phosphatase activity compared to WT hepatocytes from Irf3flox mice 
(Fig. 5F).

In agreement with these findings, we found increased hepatic 
expression of Ppp2r1b in HFD-fed mice (Fig. 5G). Using NuTRAPalb, 
we confirmed that this diet-induced increase in Ppp2r1b expression 
occurred specifically within hepatocytes (Fig. 5H). We next sought 
to determine whether hepatic PPP2R1B expression was elevated in 
obese humans with fatty liver disease (fig. S5B). In liver tissue, 
PPP2R1B mRNA was correlated with increasing hemoglobin A1c 
(HgbA1C) and elevated in patients with impaired fasting glucose 
(Fig. 5, I and J). No such trend was observed with PPP2R1A mRNA 
(Fig. 5, I and J). Furthermore, we analyzed liver biopsy microarray 
data from a cohort of patients with NAFLD and diabetes who un-
derwent weight loss surgery (fig. S5C). This cohort consisted of 
16 patients who had a liver biopsy taken at the time of weight loss 

surgery and then taken again 5 to 9 months later. Concurrent with 
an improvement in glycemic control, we found that patients had 
decreased hepatic expression of PPP2R1B after weight loss surgery 
relative to preoperative amounts (Fig.  5K). Together, these data 
demonstrate that liver PPP2R1B expression associates with poor 
glycemic control in patients with NAFLD and that IRF3 is a tran-
scriptional regulator of Ppp2r1b expression.

The metabolic actions of hepatocyte IRF3 are mediated 
by PPP2R1B
We next asked whether Ppp2r1b contributes causally to the meta-
bolic actions of IRF3 by knocking down Ppp2r1b expression in 
hepatocytes (fig. S6, A and B). IRF3LSL-2D hepatocytes were trans-
duced ex vivo with Ad-Cre to activate IRF3-2D, in the presence of 
Ppp2r1b or control small interfering RNA (siRNA). When Ppp2r1b 
expression was inhibited by siRNA, IRF3-2D failed to suppress AKT 
and AMPK phosphorylation (Fig.  6A). As before, expression of 
IRF3-2D substantially increased basal glucose production, whereas 
knockdown of Ppp2r1b prevented this, and also blocked the ability 
of IRF3-2D to inhibit AICAR-mediated suppression of glucose pro-
duction in hepatocytes (Fig. 6B). Concordantly, overexpression of 
Ppp2r1b in LI3KO hepatocytes resulted in decreased AMPK phos-
phorylation and increased basal glucose production (Fig. 6, C and 
D). We then used AAV8 expressing Ppp2r1b under the control of 
hepatocyte-specific TBG promoter (AAV8-TBG-Ppp2r1b) to selec-
tively express Ppp2r1b in hepatocytes in vivo (fig. S6C). LI3KO mice 
placed on HFD and then injected with AAV8-TBG-Ppp2r1b showed 
worsened glucose and insulin tolerance compared to those injected 
with AAV8-TBG-GFP (Fig. 6, E and F, and fig. S6, D and E). Further-
more, whole liver lysate from HFD-fed LI3KO mice injected with 
AAV8-TBG-Ppp2r1b showed decreased insulin-stimulated AKT 
and AMPK phosphorylation (Fig. 6, G and H). Together, these 
data demonstrate that the metabolic effects of IRF3 activation on 
glucose homeostasis are mediated by its transcriptional action on 
Ppp2r1b and PP2A activity.

Acute inhibition of IRF3 reverses obesity-induced glucose 
dysregulation
To evaluate the therapeutic potential of our findings, we treated 
10-week HFD-fed WT mice with antisense oligonucleotides tar-
geting IRF3 (IRF3 ASO; Fig. 7A). IRF3 ASO treatment had no effect 
on the expression of other IRFs, with the exception of IRF7, a 
known transcriptional target of IRF3 (fig. S7A) (65). However, IRF3 
ASO treatment abrogated IRF3 expression in the liver, specifically 
in hepatocytes as compared to liver NPCs (Fig. 7, B to D). Irf3 ex-
pression in other tissues, such as muscle and white adipose tissue, 
was not altered with ASO treatment (fig. S7B). IRF3 ASO treatment 
reduced liver ISG expression, including Ppp2r1b, and improved 
HFD-induced glucose, insulin, and pyruvate intolerance without 
affecting body weight (Fig. 7, E to H, and fig. S7, C to F). Similar to 
the phenotype observed in HFD-fed LI3KO mice, IRF3 ASO treat-
ment had no effect on HFD-induced steatosis (Fig. 7, I and J). However, 
we found that IRF3 ASO treatment led to substantially decreased 
HFD-induced liver injury, as estimated by serum alanine amino-
transferase (ALT) and aspartate aminotransferase (AST) (Fig. 7K). 
Together, these data demonstrate that transient inhibition of the 
IRF3 response in hepatocytes, initiated after HFD-induced meta-
bolic derangements, can improve glucose homeostasis, reverse in-
sulin resistance, and protect against liver injury.
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DISCUSSION
The liver is crucial for maintaining normal glucose homeostasis, 
contributing more than 80% of endogenous glucose production and 
serving as a major reservoir of carbohydrate in the form of glycogen 
(66). This careful balance between glucose storage, production, and 
release becomes deranged during obesity, due, at least in part, to 
chronic inflammation in the liver. The transcriptional basis for this 

response is often attributed to factors such as NF-B, but their pre-
cise role in driving metabolic dysfunction remains unknown. Here, 
we describe an IRF3-PPP2R1B axis that regulates hepatic glucose 
metabolism in obesity. The influence of IRF3 on glycemia is not 
mediated by ill-defined effects on cytokine release, as is commonly 
supposed, but rather by the direct transcriptional induction of 
Ppp2r1b, a component of PP2A.
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mRNA from male NuTRAPalb mice fed SCD or HFD for 18 weeks (n = 4). (I) Expression of PPP2R1B and PPP2R1A in liver tissue from obese humans with fatty liver disease, 
with normal (NFG) or impaired (IFG) fasting glucose (n = 14 to 23). (J) Association between HgbA1C and hepatic PPP2R1B or PPP2R1A expression in obese humans with 
fatty liver disease (n = 36 to 37). (K) Liver microarray data from a cohort of patients with NAFLD and diabetes (n = 16) who underwent weight loss surgery and had a liver 
biopsy taken at the time of surgery and then taken again 5 to 9 months later. Relative expression of hepatic PPP2R1B before (prebariatric) and after (postbariatric) weight 
loss surgery. Data are presented as means ± SD; *P < 0.05, **P < 0.01. ns, not significant.
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PP2A is one of the most abundant serine/threonine phosphatases 
in eukaryotic cells and plays an important role in the regulation of 
many proteins, including metabolic enzymes, hormone receptors, 
kinase cascades, and growth factors (67). In the liver, PP2A is in-
volved in glucose transport, insulin signaling, triglyceride export, 
and gluconeogenesis. Hepatocyte-specific ablation of Ppp2ca, the 
catalytic subunit of PP2A, results in increased insulin-stimulated 
AKT, FOXO1, and ERK phosphorylation and improves glucose 
tolerance and insulin sensitivity (68, 69). Inactivation of Ppp2r5c, a 
regulatory subunit of PP2A, in hepatocytes leads to increased glucose 
uptake and de novo lipogenesis via regulation of AMPK and SREBP-1 
(70). Furthermore, the action of ceramides on hepatic insulin sig-
naling has been suggested to involve PP2A-mediated dephosphoryl
ation of AKT, a pathway referred to as ceramide-activated protein 
phosphatase (71). In agreement with these prior findings, our work 
demonstrates the causal role that Ppp2r1b, a structural subunit of 
PP2A, plays in mediating the metabolic actions of IRF3 on hepatic 
glucose metabolism during obesity. Whereas most PP2A subunits are 
ubiquitously expressed, Ppp2r1b is preferentially expressed in the 
liver (72), suggesting that its role in triggering inflammation-induced 
metabolic dysfunction might be liver specific.

PP2A controls the phosphorylation status of a wide range of 
proteins. Although our data show that the IRF3-PPP2R1B axis reg-
ulates hepatic glucose production, the exact contributions of AMPK, 
AKT, or other yet unknown proteins to this regulatory axis remain 

unknown. The role of AMPK in hepatic glucose metabolism is con-
troversial and complex. There are multiple lines of evidence sug-
gesting that AMPK is unlikely to directly inhibit glucose production 
(53, 54). Conversely, there are several studies that suggest the oppo-
site, that AMPK activation suppresses hepatic glucose production 
(45, 46, 49). Our data show that AMPK is a part of the mechanism 
connecting IRF3 activation to changes in glucose metabolism, but 
this is undoubtedly not the only mechanism. As a key regulator of 
cellular energy status, AMPK is activated by phosphorylation when 
the cellular AMP/ATP ratio is increased (73). In obese diabetic 
mice and humans, the hepatic energy state has been reported to be 
attenuated, suggesting that high AMP/ATP ratios are part of the meta-
bolic disease milieu (49, 74). This reduced energetic state would be pre-
dicted to enhance activation of AMPK. However, multiple studies have 
shown that despite low ATP, phosphorylation of hepatic AMPK is 
inhibited in obesity, contributing to unrestrained gluconeogenesis in 
the setting of hyperglycemia (75, 76). The mechanistic basis for this 
paradoxical finding has been unclear. Our work reveals a direct, unex-
pected link between inflammation and inhibition of AMPK activity.

In addition to dysregulated glucose homeostasis, steatosis, is a 
hallmark of NAFLD and obesity. The relationship between steatosis 
and insulin resistance is complex and incompletely understood. Al-
though some studies suggest that systemic insulin resistance causes 
hepatic lipid accumulation via an Srebp1c-mediated pathway, others 
propose that causality proceeds in the opposite direction through 
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AAV8-TBG-GFP 4 weeks prior. Mice were fasted for 5 hours, injected intraperitoneally with insulin (5 U/kg), and then euthanized 5 min later. Liver tissue was harvested and 
frozen within 90 s. (H) Immunoblot showing pAMPK (Thr172) and total AMPK in liver tissue from LI3KO mice fed HFD for 16 weeks and injected with AAV8-TBG-Ppp2r1b 
or AAV8-TBG-GFP 4 weeks prior. Mice were fasted for 5 hours before euthanasia. Data are presented as means ± SD; *P < 0.05, **P < 0.01.
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the actions of bioactive lipid species such as ceramides and DAGs 
(77–80). The controversy centers on the idea that, during the course 
of obesity, the liver displays selective insulin resistance, where insu-
lin fails to inhibit hepatic gluconeogenesis but continues to promote 
de novo lipogenesis (81). Here, we show that whole body deficiency 
in IRF3 protects against both HFD-induced steatosis and dysregu-
lation in glucose homeostasis, but hepatocyte-specific ablation of 
IRF3 protects against only the latter. Thus, loss of hepatocyte IRF3 
appears to uncouple hepatic insulin sensitivity and gluconeogenesis 
from steatosis. This begs the question, then, what cell type is IRF3 

acting through to control steatosis? There is a small but burgeoning 
literature supporting the role of Kupffer cells (KCs) in promoting 
the development of steatosis during HFD feeding (36, 82–84). 
KCs are self-renewing liver-resident macrophages that originate 
from yolk sac–derived progenitor cells during embryonic develop-
ment (82). Activation of KCs occurs during obesity and precedes 
the development of NAFLD, and depletion of KCs protects against 
steatosis (85, 86). How KCs exert their prosteatotic effects remains 
unclear. Initial work suggested a role for KC-mediated secretion 
of proinflammatory cytokines and chemokines such as TNF, IL-1, 
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and MCP1 (84, 87, 88). However, anti-inflammatory strategies have 
demonstrated modest effects on obesity-induced dysglycemia and ste-
atosis (15, 16, 89). A more recent study suggested that noninflammatory 
secretory products from KCs might be involved (83). It remains to be 
seen whether IRF3 activation in KCs plays a causal role in the develop-
ment of HFD-induced steatosis and through which mediators.

It is noteworthy that LI3KO mice were not protected from ste-
atosis, because the canonical function of AMPK is phosphorylation 
of ACC, which inhibits the production of malonyl-CoA, the first 
committed substrate for de novo lipogenesis and an inhibitor of fat-
ty acid oxidation (90). Although numerous studies have shown that 
this results in decreased triglyceride accumulation in hepatocytes, 
the precise role of AMPK and ACC in steatosis remains controver-
sial (91–94). One study showed that phosphorylation of ACC by 
AMPK is not required for regulation of fatty acid oxidation and an-
other demonstrated that viral mediated overexpression of constitu-
tively active AMPK in the liver actually lead to increased steatosis 
(46, 95). More recently, work from the Carling laboratory revealed 
that liver-specific AMPK activation had no effect on HFD-induced 
steatosis but protected against steatosis only when mice were fed a 
high-fructose diet (96). Their findings indicate that the predomi-
nant effect of AMPK activation on lipids in the liver is suppression 
of de novo lipogenesis, which is not a major driver of steatosis on 
HFD. Thus, the effect of AMPK activation on steatosis in experi-
mental models may only be revealed under certain conditions, such 
as after a high-fructose diet. Our data are in agreement with this 
notion because the diet we used contains 60% fat without fructose. 
The reduced steatosis we observed in the HFD-fed IRF3KO mice 
was likely independent of AMPK signaling in hepatocytes.

Numerous studies have shown that activation of AMPK inhibits 
inflammation. AMPK signaling can inhibit the inflammatory re-
sponse induced by NF-B through several downstream targets such 
as SIRT1, FOXO, and PGC-1 (97–99). In particular, activation of 
AMPK in macrophages was demonstrated to decrease proinflamma-
tory cytokine secretion and promote polarization to anti-inflammatory 
phenotype (100, 101). Furthermore, inactivation of macrophage 
AMPK has been shown to inhibit insulin signaling and compromise 
glucose metabolism, suggesting a role for AMPK-mediated suppres-
sion of inflammation in promoting insulin sensitivity (102, 103). In 
our studies, we found that HFD-fed LI3KO mice displayed increased 
liver AMPK activation and decreased macrophage infiltration. This 
suggests an additional mechanism by which IRF3-AMPK signaling 
might indirectly regulate hepatic glucose metabolism and insulin 
sensitivity in vivo through an inflammatory response. However, our 
studies in isolated hepatocytes clearly indicate that IRF3 affects glu-
cose production in a cell-autonomous manner.

Innate immunity provides nonspecific defense during the earliest 
stages of infection. However, it is now well appreciated that innate 
immune signaling also fuels the metabolic complications of obesity 
such as NAFLD and insulin resistance (104). Our work shows that 
obesity activates hepatocyte IRF3 in humans and mice. In the con-
text of HFD feeding, IRF3 can be activated by multiple different 
damage-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) that are known to be elevated, 
including mitochondrial DNA, genomic DNA, free fatty acids, bacterial 
DNA, and lipopolysaccharide (LPS) (105–107). These ligands bind 
to specific PRRs such as cGAS, TLR4, and TLR9 triggering IRF3 
phosphorylation. In the liver, TLR4, the PRR for LPS, has been 
shown to regulate obesity-induced inflammation, steatosis, and insulin 

resistance (106, 108). Similarly, hepatocyte mitochondrial DNA 
has been demonstrated to promote NAFLD progression and insulin 
resistance via activation of TLR9 (107, 109). Although there are po-
tentially multiple HFD-induced DAMPs and PAMPs capable of 
activating IRF3  in hepatocytes, the exact contribution of each re-
mains to be determined.

Multiple studies have investigated the role of the STING/TBK1-
IKK/IRF3 axis in metabolism. Mice deficient in STING demon-
strated improved insulin sensitivity and glucose tolerance on HFD 
(110), with reduced hepatic steatosis, injury, and fibrosis (36). Sim-
ilarly, TBK1 or IKK ablation in mice protects against HFD-induced 
systemic glucose intolerance and insulin resistance, as well as hepatic 
steatosis (5, 111). In the case of IRF3, the story is more complex. 
IRF3 deficiency protects against alcohol-induced liver injury and 
steatosis, as well as HFD-induced insulin resistance (28, 112, 113). 
Our work with global IRF3-deficient mice corroborates these findings. 
However, some studies have linked IRF3 deficiency to increased liver 
injury, steatosis, and insulin resistance in response to HFD (37, 38). 
The precise rationale for these dichotomous results is unclear but 
might be related to the lack of appropriate littermate controls in 
many of the latter studies, as well as using HFDs of different com-
position. Furthermore, these investigations were all performed with 
global IRF3 knockout mice. In this work, we showed that IRF3 ab-
lation in hepatocytes specifically protects against HFD-induced glu-
cose mishandling and insulin resistance in the liver, without effects 
on steatosis or body weight.

Although IRF3 plays a clear role in metabolism, few studies have 
investigated which targets mediate its metabolic actions. As a tran-
scription factor, IRF3 directly regulates the transcription of a set of 
inflammatory genes termed ISGs (33). Of these, IFN- has been 
shown to promote HFD-induced hepatic steatosis and insulin resist
ance (114). Another ISG, viperin (RSAD2), was recently shown to 
regulate adipose tissue thermogenesis and fatty acid -oxidation 
during HFD (115). In the context of coxsackievirus infection, ISG15 
was demonstrated to reprogram hepatic metabolism by increasing 
oxidative capacity and gluconeogenesis in hepatocytes (116). How-
ever, outside of these IRF3-regulated inflammatory genes, there has 
never been a comprehensive analysis of all direct IRF3 targets in any 
cell type. Our transcriptome and cistrome profiling results show 
that IRF3 directly regulates numerous nonimmunological targets 
and metabolic pathways in hepatocytes. We identified Ppp2r1b as 
an IRF3 target gene and that it is responsible for IRF3’s metabolic 
actions on glucose homeostasis and insulin signaling. By driving the 
expression of Ppp2r1b, IRF3 increases PP2A activity, resulting in 
dephosphorylation of key metabolic kinases such as AMPK and 
AKT. In the context on obesity, this leads to increased hepatic glu-
coneogenesis and insulin resistance. Thus, IRF3-PPP2R1B serves as 
a causal link between obesity-triggered inflammation and metabol-
ic dysfunction. Furthermore, the dephosphorylation of multiple key 
kinases by PPP2R1B potentially explains how obesity-induced in-
flammation can fuel such a wide array of metabolic derangements.

There are several limitations to this study. Although we demon-
strated that IRF3-mediated expression of PPP2R1B increased hepatic 
glucose production by dephosphorylating AMPK, it is undoubtedly 
not the only mechanism. The substrate specificity of PPP2R1B in 
hepatocytes is unknown. Thus, identifying the complete phospho
proteome in hepatocytes with and without PPP2R1B will be critical 
to better understanding the exact mechanisms by which the IRF3-
PPP2R1B axis controls glucose production. Furthermore, although 
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inhibiting IRF3 activation or PPP2R1B expression reduced hepatic 
glucose production, we did not observe any effect on HFD-induced 
steatosis. Further work will be needed to determine whether the 
present steatosis could trigger fibrosis and worsening of liver dis-
ease. Last, although data in humans show that liver PPP2R1B ex-
pression associates with obesity and diabetes, additional work is 
required to determine whether PPP2R1B modulation is a viable 
therapeutic modality in humans.

In summary, our data suggest an IRF3-centric model for how 
obesity-induced inflammation regulates hepatic glucose metabo-
lism. At the center of this model lies Ppp2r1b, an IRF3-inducible 
target that functions as a critical component of the heterotrimeric 
phosphatase, PP2A. When overexpressed by IRF3 during pathological 
conditions, such as overnutrition, Ppp2r1b increases PP2A phos-
phatase activity, which, in turn, has pleiotropic effects on glucose 
homeostasis and insulin signaling. It dephosphorylates AMPK, a 
key cellular energy sensor, and AKT, a critical signaling molecule in 
insulin signaling. Moreover, in obese individuals with NAFLD, he-
patic Ppp2r1b expression tracks with HgbA1C concentrations and 
is elevated in patients with impaired fasting glucose. Future studies 
will be required to further elaborate the role of Ppp2r1b and to fully 
elucidate its target kinases in metabolic disease.

MATERIALS AND METHODS
Study design
The objective of this study was to investigate the contribution of 
hepatocyte IRF3 to the metabolic dysfunction associated with obe-
sity and NAFLD in humans and mice. To evaluate IRF3 activation 
in humans, we measured gene expression of IRF3, gene expression 
of IRF3-regulated genes (ISGs), IRF3 transcriptional activity, and 
pIRF3 immunohistochemistry in liver tissue. To evaluate IRF3 acti-
vation in mice, we measured gene expression of Irf3, gene expres-
sion of IRF3-regulated genes (ISGs), protein expression of pIRF3, and 
nuclear accumulation of IRF3 in liver tissue. Hepatocyte-specific IRF3 
loss-of-function and gain-of-function studies were conducted in mice 
placed on HFD to induce obesity and NAFLD. Metabolic dysfunction 
was analyzed by fed/fasting serum glucose, fed/fasting serum insulin, 
glucose tolerance test (GTT), insulin tolerance test (ITT), pyruvate 
tolerance test (PTT), liver TAG accumulation, in vitro glucose pro-
duction, and liver expression of pAKT and pAMPK. To analyze the 
molecular mechanism responsible for the metabolic actions of IRF3, 
we performed unbiased cistrome and transcriptome analysis by IRF3 
CUT&RUN-seq and RNA-seq, respectively. PPP2R1B loss-of-function 
and gain-of-function studies were conducted using siRNA, plasmid-
mediated overexpression, and viral AAV8-mediated expressing un-
der the control of the hepatocyte-specific TBG promoter. For in vivo 
studies, the number of mice in each group is indicated in the figure 
legends. For in vitro studies, primary mouse hepatocytes were isolated, 
and the number of independent experiments performed is indicated 
in the figure legends. Power analyses were not used to calculate sam-
ple sizes; samples were not excluded, and investigators were not blinded 
during experiments.

HFD feeding
All animal experiments were performed with approval from the In-
stitutional Animal Care and Use Committees of the Harvard 
Center for Comparative Medicine and Beth Israel Deaconess Med-
ical Center. Mice were maintained at 12-hour/12-hour light/dark 

cycles, 23°C room temperature, and 30 to 70% humidity with ad 
libitum access to food and water in individually ventilated cages. At 
about 6 weeks of age, male mice were placed on either a SCD [8664 
Harlan Teklad; 6.4% (w/w) fat] or a HFD consisting of 20% calories 
from protein, 60% from fat, and 20% from carbohydrate (Research 
Diets, D12492) for the indicated durations. Body weight was mea-
sured weekly. At the end of experiments, mice were euthanized, and 
tissues were collected, flash-frozen in liquid nitrogen, and stored at 
−80°C until use for downstream analysis.

In vivo AAV8 injections
Six-week-old IRF3LSL-2D mice were placed on either SCD or HFD 
for 6 weeks and then tail vein–injected with 1 × 1011 viral genomes 
(vg) of AAV8 expressing Cre recombinase or GFP under the control 
of hepatocyte-specific TBG promoter (AAV8-TBG-Cre and AAV8-
TBG-GFP; Addgene). AAV8-infected HFD mice remained on HFD 
for two more weeks and were then analyzed by GTT. AAV8-infected 
SCD mice remained on SCD for two more weeks and were then euth-
anized for tissue harvesting or primary hepatocyte isolation.

Six-week-old LI3KO mice were placed on HFD for 12 weeks and 
then tail vein–injected with 1 × 1011 vg of AAV8 expressing Ppp2r1b 
or GFP under the control of hepatocyte-specific TBG promoter 
(AAV8-TBG-Ppp2r1b and AAV8-TBG-GFP; VectorBuilder, Addgene). 
AAV8-infected LI3KO mice remained on HFD and were then ana-
lyzed by GTT at week 14 and ITT at week 15. They were euthanized 
for tissue harvesting at week 16.

Statistical analysis
Sample size, mean, and significance P values (P < 0.05) are indicated 
in the text, figure legends, or Materials and Methods. Error bars in 
the experiments represent SD from either independent experiments 
or independent samples. Statistical analyses were performed using 
GraphPad Prism.
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Hepatic IRF3 fuels dysglycemia in obesity through direct regulation of Ppp2r1b
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Linking liver inflammation and glucose homeostasis
Interferon regulatory factor 3 (IRF3) has been linked to metabolic dysregulation in obesity and nonalcoholic fatty liver
disease (NAFLD), but its exact role in this context is unclear. Patel et al. report that hepatic IRF3 transcriptionally
regulates Ppp2r1b, with downstream effects on glucose homeostasis via AMPK. Hepatocyte-specific knockout of
IRF3 in high-fat diet–fed mice affected glycemic control only, uncoupled from steatosis. Antisense targeting of Irf3
improved insulin-mediated metabolic responses in obese mice, demonstrating a proof-of-principle therapeutic strategy.
Enhanced hepatic activation of IRF3 in patients with NAFLD and obesity decreased after bariatric surgery, suggesting
relevance to humans.
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